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SUMMARY 
We present a numerical comparison of some time-stepping schemes for the discretization and solution of the non- 
stationary incompressible Navier-Stokes equations. The spatial discretization is by non-conforming quadrilateral 
finite elements which satisfy the LBB condition. The major focus is on the differences in accuracy and efficiency 
between the backward Euler, Clank-Nicolson and fractional-step 0 schemes used in discretizing the momentum 
equations. Further, the differences between fully coupled solvers and operator-splitting techniques (projection 
methods) and the influence of the treatment of the nonlinear advection term are considered. The combination of 
both discrete projection schemes and non-confonningjinite elements allows the comparison of schemes which are 
representative for many methods used in practice. On Cartesian grids this approach encompasses some well- 
known staggered grid finite difference discretizations too. The results which are obtained for several typical flow 
problems are thought to be representative and should be helpful for a fair rating of solution schemes, particularly 
in long-time simulations. 
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1. INTRODUCTION 

We consider numerical solution techniques for the non-stationary incompressible Navier-Stokes 
equations 

u ~ - v A I I + u * V U + V ~ = ~  and V . U = O  in Q x ( O , T ] ,  (1) 

for given force f and viscosity v, with prescribed boundary values on the boundary and an initial 
condition at t = 0. Solving this problem numerically is still a considerable task in the case of long-time 
calculations and higher Reynolds numbers, particularly in 3D. In this paper we concentrate on the 2D 
case, which is representative also for 3D problems. Related results in 3D can be found in Reference 1 .  

Apart from rather 'exotic' schemes such as discontinuous spacetime Galerkin methods2 and 
chamcteristic methods: the common solution approach is a separate discretization in space and time. 

We first (semi)discretiz.e in time by one of the usual methods known from the treatment of ordinary 
differential equations, such as the forward or backward Euler, Crank-Nicolson or fractional-step 0 
scheme: to obtain a sequence of generalized stationary Navier-Stokes problems. Given u" and the time 
step k = tn+l - t,,, then solve for u = u"+l and p = p"+' 

(2) 
u - u" 

k + 0(-vAu + u*Vu)  + Vp = g"" and V - u  = 0 in Q, 
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with right-hand side 

$+I: = ern+' + (1 - e)r - (I - e)(-hn + un VU"). (3) 

The parameter 8 has to be chosen depending on the time-stepping scheme, e.g. 8 = 1 for the backward 
Euler scheme or 0 = 4 for the Crank-Nicolson scheme. The pressure term Vp = Vp"+' may be replaced 
bY 

evpn+' + (1 - e)vpn, (4) 

but, with appropriate postprocessing, both strategies lead to solutions of the same accuracy. In all cases 
we end up with the task of solving in each time step a non-linear saddle point problem of type (2) which 
then has to be discretized in space. 

The resulting non-linear systems of equations may be treated by a coupled approach in u and p? 
which promises the best stability behaviour but also entails the largest numerical effort. Further variants, 
known as projection methods,6 decouple pressure and velocity, which reduces the problem to the 
solution of a sequence of 'simple' (scalar) problems. However, at the same time, they lead to smaller 
time steps owing to the inherently more explicit character and often suffer from spurious pressure 
boundary layers. Finally, concerning the treatment of the non-linearity, we are left with the problem: 
should we solve 'exactly' the non-linear problems in each time step, or should we linearize the advection 
term, e.g. by extrapolation in time, or might an explicit treatment already give satisfactory results? 

These different techniques lead to a large variety of schemes, all of which have been occurring in 
practice for years. Theoretical considerations can provide some ideas concerning stability of these 
schemes, convergence rates for subproblems, necessary time step sizes or qualitative behaviour for large 
Reynolds numbers, but a complete analysis or quantitative prediction is not possible today. Therefore 
the only way to make a judgement is to perform numerical tests, at least for some classes of problems 
which seem to be representative. However, looking into the literature, it seems that there have not been 
many studies of t h i s  type which can give satisfactory answers. 

We suppose that one of the main reasons is the difficulty in finding a spatial discretization which 
allows for the design of efficient as well as robust methods for all types of schemes mentioned. Of 
course, for a fair comparison, all schemes should produce the 'same' results (up to round-off errors) if 
the time step is small enough and the elapsed computer time has to be acceptable on o r w  
workstations. For higher-order finite elements, e.g. those using at least quadratic interpolation for the 
velocity, 'fast' projection methods can be implemented, but the realization of robust and efficient 
coupled solvers, e.g. of block Gauss-Seidel type,7 is much harder. On the other hand, piecewise 
constant pressure approximations allow for very fast coupled multigrid techniques, but it is not so clear 
how to use them in projection schemes which involve the solution of discrete Poisson problems with 
these elements. Additionally, many well-known discretization schemes using continuous equal-order 
interpolation for velocity and pressure need additional stabilization which is difficult to optimize. For 
example, projection schemes implicitly introduce some stabilization terms,* but these may not be 
sufficient for small time steps. What we need (at least for our comparisons) is a (finite element) 
discretization scheme and a solution procedure satisfying the following. 

1. The finite element spaces for u and p are stable, i.e. satisfy the LBB condition.' 
2. A robust and efficient coupled solver is available. 
3. A robust and efficient solver of projection type is available. 
4. A non-linear solution strategy is available. 

A method which seems to satis@ all these requirements consists of discrete projection schemes with 
non-conforming linear or rotated muZtiZinear finite elements for u and piecewise constant approxima- 
tions forp.'o*'' With this approach we can develop very efficient solution schemes of both coupled and 
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projection type, with a special non-linear or linearized treatment of the advection. The resulting 
solutions are coincident (as soon as the time steps are small enough) and no spurious pressure 
oscillations occur. This approach will be the basis of our theoretical and numerical investigations which 
examine the following aspects. 

1. What is the influence of the type of discretization for the time derivative u,? We consider the 
backward Euler, Crank-Nicolson and fractional-step 8 schemes. We restrict ourselves to implicit 
methods only (with 8 2 0.5), at least for the diffusion part, since many tests show that otherwise 
the time steps have to be chosen too small to guarantee stability, and recently very efficient 
solution methods for this kind of implicit scheme have become available. The main focus will be 
on the difference between the Crank-Nicolson and fractional-step 8 schemes, which are both of 
second-order accuracy and have the same numerical cost. Also, the fractional-step 8 scheme has 
(theoretically) better stability properties as it stems from a strongly A-stable difference formula.I2 

2. What is the influence of the various ways of coupling the velocity u with the pressurep? Recently 
we have shown" that the class of discrete projection methods contains both variants, u-p 
coupled solvers as well as operator-splitting schemes, and a parameter-controlled transition 
between the two is possible. We have shown by a complexity analysis that particularly in the case 
of higher Reynolds numbers the projection steps can be performed in a much more efficient way. 
However, the question which cannot be answered theoretically is: how much smaller must the 
time steps be chosen to guarantee results of the same quality as obtained by the filly coupled 
approach, and what about the total CPU time? 

3. What is the influence of the treatment of the non-linear advection term? It is necessary to use a 
fully non-linear iteration in each time step or is it sufficient to linearize the advection by 
extrapolation in time? This means that we replace the non-linear term u"+l. Vu"+l in a semi- 
implicit way by 

U" VU"+' or (2u" - u"-') VU"+~. ( 5 )  

Another possibility is a hlly explicit treatment of this term as u" - Vu" whereby only symmetric linear 
systems have to be solved, but what about the necessary time steps? 

For a given spatial mesh we always try to reach the same accuracy for all methods proposed, with 
different time steps which are chosen by hand or by an adaptive time step control. This control, which 
'optimally' adapts the necessary time steps for each scheme, and the fact that we optimized all 
implemented versions in the same way should guarantee a fair comparison. In the end we obtain the total 
CPU time needed to reach a prescribed time level, which is then taken as the final measure for the 
quality of the various schemes. 

2. SPATIAL AND TIME DISCRETIZATION 

We first discretize the time derivative in the Navier-Stokes equations (1) by one of the usual time- 
stepping schemes, with prescribed boundary values for every time step. Given u" and the time step 
k = tn+, - tn, then solve for u = u"+' and p = pn+l 

(6) 
u - u" 

k +8(-vAu+u-V~)+Vp=g"+ '  and V.U=O i n n .  

with right-hand side 

g"+': = W" + (1 - 8)f" - (1 - 8)(-vAun + u" Vu"). (7) 
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In the past, explicit time-stepping schemes have been commonly used in non-stationary flow 
calculations, but because of the severe stability problems inherent in this approach, the required 
small time steps prohibited the long-time solution of really time-dependent flows. Owing to the high 
stiffness, one is limited to implicit schemes in the choice of time-stepping methods for solving this 
problem. Since implicit methods have become feasible thanks to more efficient linear solvers, the 
schemes most frequently used are either the simple first-order backward Euler scheme (BE) with 8 = 1 
or the second-order Cmnk-Nicolson scheme (CN) with 8 = f These two methods belong to thegroup of 
one-step 8 schemes. The CN scheme occasionally suffers from unexpected instabilities because of its 
weak damping property (not strongly A-stable), while the BE scheme is of first-order accuracy only. 
Another method which seems to have the potential to excel in this competition is thejkzctionul-step 8 
scheme (FS). It uses three different values for 8 and for the time step k at each time level. For a realistic 
comparison we define a macro time step with K = tn+' - t,, as a sequence of three time steps of 
(possibly variable) size k. Then in the case of the backward Euler or Crank-Nicolson scheme we 
perform three substeps with the same 8 as above and time step k= K / 3 .  

For the fractional-step 8 scheme we proceed as follows. Choosing 8 = 1 - J2/2, @ =  1 - 28, 
a = (1 - 28)/(1 - 8) and b = 1 - a, the macro time step t, + tn+' = t,, + K is split into three 
consecutive substeps (with 8: = a8K = PB'K): 

[I + ~N(u"+')]u"+' + 8KVp"" = [I - 88KN(u")]u" + OKf", V * u"" = 0, 

[I  + ~ N ( U " + * - ~ ) ] U " + ~ - '  + B'KVp"+'-' = [I - aB'KN(u"+')]u"+' + B'Kf"+'-', v. u"+l-' = 0 

[I + 8N(u"+l)]u"+' + 8KVpn+l = [I - /38KN(~"+~-')]u"+'-' + 8Kf"+'-', V-  u"+l = 0. 

Here and in the following we use the more compact form for the diffusive and advective parts: 

N(u)u: = -UAU + u * VU. (8) 

Being a strongly A-stable scheme, the FS method possesses the full smoothing property, which is 
important in the case of rough initial or boundary values. Further, it contains very little numerical 
dissipation, which is crucial in the computation of non-enforced temporal oscillations in the flow. A 
rigorous theoretical analysis of the FS ~ c h e m e ' ~ - ' ~  applied to the Navier-Stokes problem establishes 
second-order accuracy for this special choice of 8. Therefore this scheme should combine the 
advantages of both the classical CN scheme (second-order accuracy) and the BE scheme (strongly 
A-stable), but with the same numerical effort. 

Thus in each time step we have to solve non-linear problems of the following type. Given u", 
pummeters k = k(t,,+,), 8 = 8(r,,+,) and 8, = Oi(t,,+,), i = 1, . . . , 3 ,  then solve for u = u"+I and 

v * u  = 0.  (9) 

p =p))+' 

[I + ~ ~ N ( u ) ] u  + kVp = [Z - BlkN(u")]~" + 82kf"'l + 8,kfn, 

For spatial discretization we choose a finite element approach. In setting up a finite element model of 
the Navier-Stokes equations, one starts with a variational formulation. On the finite mesh Th (triangles, 
quadrilaterals or their analogues in 3D) covering the domain R with local element width h, one defines 
polynomial trial functions for velocity and pressure. These spaces Hh and Lh should lead to numerically 
stable approximations as h + 0, i.e. they should satisfy the Bubusku-Brezzi condition with a mesh- 
independent constant y :  
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Figure 1. Nodal points of nontonforming finite element pair 

Many stable pairs of finite element spaces have been proposed in the literature. Our favourite 
candidate is a quadrilateral element which (in 2D) uses piecewise rotated bilinear shape fimctions for 
the velocities, spanned by (2 - 3, x,  y, l), and piecewise constant pressure approximations (see Figure 
1). The nodal values are the mean values of the velocity vector over the element edges and the mean 
values of the pressure over the elements, rendering this approach 'nonconforming'. This element is the 
natural quadrilateral analogue of the well-known triangular Stokes element of Crouzeix-Raviart" and 
can also be defined in three space dimensions. A convergence analysis is given in Reference 10 and very 
promising computational results are reported in References 5 ,  16 and 17. 

This element pair has several important features. It admits simple upwind strategies which lead to 
matrices with certain M-matrix properties. Further, efficient multigrid solvers are available which work 
satisfactorily over the whole range of relevant Reynolds numbers, 1 < Re < lo5, and also on non- 
uniform meshes. In Reference 11 we have even shown by a complexity analysis that this pair of 
elements is most efficient in the case of highly non-stationary flows. In combination with the discrete 
projection methods it works very robustly and efficiently in a multigrid code also on highly stretched 
and anisotropic grids. 

Using the same symbols u andp also for the coefficient vectors in the nodal representation for the 
functions u andp, the discrete version of problem (9) may be written as a (non-linear) algebraic system 
of the following form. Given u", a right-hand side g and a time step k; then solve for u = u"+' and 
p =p"+' 

su + kBp = g, BTu = 0, (1 1) 

(12) 

with matrix S and right-hand side g such that 

su = [M + eldv(u)lu, g = [M - e,m(un)]un + e2w+1 + e,w. 
Here Mis the mass matrix and N(.) the advection matrix containing the diffusive and convective parts 

corresponding to the non-linear form in (8). For dominant transport the advection part may include some 
stabilization, e.g. some upwind mechanism.' B is the gmdient matrix and - BT the transposed 
divergence matrix. With M, we denote the lumped mass matrix, which is a diagonal matrix. 

3. SOLUTION TECHNIQUES FOR DISCRETE EQUATIONS 

In the last section we arrived at the following discrete non-linear problems for u and p to be solved in 
each time step. Given a right-hand side g with appropriate boundary conditions, then solve 

su + kBp = g, BTu = 0. (13) 
Two possible approaches are as follows. 

1. We first treat the non-linearity by an outer non-hear itmation of fixed point or quasi-Newton 
type or by a linearization technique through extrapolation in time to obtain linear indefinite 
subproblems which can be solved by a coupled or splitting approach. 
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2. We first split the coupled problem to obtain definite problems in u (Burgers equations) as well as 
in p (linear pressure Poisson problems). Then we treat the non-linear problems in u by an 
appropriate non-linear iteration or by a linearization technique. 

In our applications the non-linear problems are solved by the adaptivefixed point defect correction 
method: while for the solution of the coupled problems or for their decoupling the discrete projection 
method formalism is used." 

3.1. Treatment of the non-linear problem 

We perform a number of non-linear iteration steps by the adaptive fixed point defect correction 
method. In each iteration an auxiliary linear problem corresponding to the Frechkt derivative of the 
Navier-Stokes operator (or Burgers operator) has to be solved. The 'exact' derivative leads to matrices 
including 'convection' terns u" - Vu"+l which can be stabilized by upwinding, but also 'reaction' terms 
of the form u"+l * Vu" which may cause instabilities for larger time steps. We prefer to simply delete the 
'bad' reaction terms, leading to an approximate Frechkt derivative only. We explain this procedure in 
detail for the abstract non-hear equation 

W u  =f, (14) 

where T(.) represents the Navier-Stokes or the Burgers operator. On the discrete level our procedure is 
equivalent to solving in each non-linear iteration I as Oseen or a convection4fision equation in u1 
(and PI): 

UI = 111-1 - wr[~(u/-1)1-"~(u/-l)~/-l -A, (15) 

with of > 0 being chosen adaptively. The operator ?(u,-,) represents the approximate Frechkt derivative 
and may be chosen as = T(u/-,). However, other choices are possible (see below). This non- 
linear iteration may be tenninated if the residual T(U~-~)U,-~ - f is small enough or if I exceeds a given 
limit N 

In the non-stationary case we can also stop with N= 1 (and 01 = 1). This approach can be interpreted 
as a linearization of the convective term by a constant extrapolation in time, e.g. replacing 

by u"*VU"+~. (16) un+l . VUn+l 
The corresponding time-stepping scheme is of first order only. A simple remedy for obtaining second- 
order accuracy with about the same numerical cost is to use a linear extrapolation in time, i.e. using 

(2u" - u"-l). VU"+' as approximation for u"+' -vu"+'. (17) 

For both schemes we have to build up the system matrices in each time step. The corresponding linear 
systems are non-symmetric and require special solution techniques. A much simpler and very common 
possibility is a fully explicit treatment of the non-linearity, i.e. replacing 

by u"-VU" (18) Un+l , vun+l 

and considering this advection term as part of the right-hand side. The resulting linear systems are 
symmetric quasi-Stokes or positive definite quasi-Poisson equations. 

It is obvious that the fully non-linear iteration schemes carry more numerical cost for each time step 
than the linearization techniques (with only one iteration). Additionally, the fully explicit treatment 
consumes the least effort. However, the question not included in these considerations is that concerning 
the necessary size of the time step. The fully non-linear iteration is expected to be more stable and 
accurate, while the price to be paid for the more explicit schemes is a smaller time step size. Thus, 
asking for the total CPU time, which schemes are the more efficient ones? 
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3.2. Treatment of coupled equations 

We treat the coupled problems of type (13), which may be linear or non-linear, by the discrete 
projection method, which reads (with L 2 1, a > 0, mostly a = 1, 2) as follows. 

Geneml non-linear version of Discrete Pmjection Method (2). Given uo: = uo and po:  = PO, then 
solveforI= 1, ..., L 

Finally, set p :  = d., ii = S-'(g - kB#-') and determine u via 

If the matrix S corresponds to a discretized linear Owen or quasi-Stokes operator, we can rewrite this 
algorithm in the following way. 

Linear version of Discrete Pmjection Method (Z). Given uo: = uo and po: = P O ,  then solve for 
I =  1, ..., L 

Finally, set p :  = p" and calculate u via 

(22) 
k 
a 

SU = g - kBp + -(d - SC-')B(pL -p"-'). 

This scheme is nothing else but the classical a-relaxed Richardson iteration for the Schur complement 
form of problem (13) with the special preconditioner B T C ' B .  The operator C should be a good 
approximation to S, but at the same time C-' should be easily applied. The addictive term 
(k/aXd - SC-')B@ -#-') is introduced to ensure that u is dkcretet) divergence-fie, i.e. 

BTu = 0, (23) 
and no additional evaluation of S-' is needed in this step. If S is the non-linear operator, we use for its 
'inversion' the proposed adaptive fixed point defect correction method. 

There are various possibilities for choosing the preconditioner C and the iteration limit L. In 
Reference 20 we have shown that there are at least two promising approaches. 
1. First we use the adaptivefiedpoint defect correction method as an outer iteration. Then we have 

to solve linear coupled equations of quasi-Stokes or Oseen type in each iteration. If we choose C = S, we 
have to realize the application of (BTS-'B)-' by performing directly a solution step with the linear 
indefinite system 

A good solver for these linear equations is usually obtained by a direct multigrid approach. Owing to 
the definitions ofA, certain block Gauss-Seidel or distributive smoothers7~'* may successfilly be used. 
However, the numerical effort for each iteration is large and severe problems still exist on highly 
anisotropic grids.19 There is some work going on to develop block ILU or other linewise working 
methods, but especially the efficient and robust solution of the 3D problem on general grids is still an 
open problem. Additionally, we have seen in Reference 1 1  that, assuming large Reynolds numbers (and 
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correspondingly small time steps k), S can be interpreted as a non-symmetric but well-conditioned 
perturbation of the mass matrix M. On the other hand, we have for the equivalent Schur complement 
equation, and equivalently for the matrix A in the case of small k, 

cond(BTS-’B) = cond(BTIM + O(k)]-’B) % cond(Ah) = O(h-’), (25) 

with Ah being a discrete Laplacian. This means that for small time steps the condition number of the 
coupled system is bounded below by qh- ’ ) ,  resulting from a second-order problem due to the 
incompressibility constraint, and no M e r  improvement may be gained even for smaller k. Hence we 
see that the coupled matrix A in (24) consists of a time-dependent large part S acting on the velocity 
components, which gets ‘better’ for small k, and a much smaller ‘projection’ part BTS-’B% 
BTM-’B FZ Ah acting on the pressure, which is (almost) time-step-invariant. However, this small part 
determines the overall convergence rate of the coupled solvers for small k. 

Therefore, for really non-stationary problems requiring small time steps, the efficiency of this 
coupled technique does not improve as expected. This is due to the central idea of using efficient Stokes 
solvers as basic components even for the hlly non-stationary non-linear Navier-Stokes equations. A 
completely different approach is to choose the matrix C = MI for preconditioning. This is an ‘exact’ 
preconditioner for the case of divergence-free L’-projection and can be expected to work well for small k 
only, as for low Reynolds numbers and large time steps the corresponding convergence rates may 
deteriorate. Other diagonal matrices as choices for C (which is similar to SIMPLE-type methods; for an 
overview see Reference 20) and the distributive smoothers of Wittum’* are possible candidates too. For 
really non-stationary flows these approaches seem to be more appropriate than the hlly coupled 
techniques. 

We have seen in Reference 11 that especially for the non-conforming finite elements used, the 
application of S-’ and (BT M i ’  B)-’ leads to very robust and efficient solvers involving relatively low 
numerical cost. Each iteration step may be expected to be ‘faster’ by at least a factor of nine (in 2D) or 19 
(in 3D) compared with the coupled method.” Our approach is to replace the approximate Frechkt 
derivative in (15) by another approximation, namely by L 2 1 steps of the (linear) discrete projection 
scheme. Our numerical tests even show that in most cases it is sufficient to perform L = 1 iteration with 
only one multigrid sweep for the resulting linear operators S and P = BT M y 1  B. Hence, in comparison 
with the coupled solvers, the total number of non-linear steps may increase, but at the same time in each 
non-linear iteration the numerical effort for solving the linear subproblems is drastically decreased. 

2. The other possibility is to use directly the non-linear scheme (19), (20) for the solution of problem 
(13). This iteration can be viewed as a special kind of non-linear iteration scheme for solving the 
generalized stationary Navier-Stokes problem (1 3). First the velocity u and pressure p are decoupled in 
an outer iteration, while the non-linear transportdiffusion equation is solved in an inner iteration. 
However, we perform only L = 1 iteration. Nevertheless, it is obvious that this scheme works well for 
small time steps. This approach is well known and similar to a certain class of well-established iteration 
schemes, namely the ‘classical’ projection schemes. 

Since the matrix BT My’ B resembles a mixed discretization of the Laplacian operator,6 this method 
is a discrete analogue of the schemes proposed by Chorin” (if we set po = 0) and Van Kan” (if we 
choosepo =p(t,)). The main difference is that we first discretize the equations as shown in (1 1) and then 
perform the projection steps (1 9) and (20). Hence our treatment of boundary values for the pressure p, 
which is one of the main problems with the continuous projection schemes, may be different. Taking the 
same (Dirichlet) boundary conditions in assembling the matrix MI as for the complete matrix S, our 
numerical tests show good results (no significant boundary layers for higher Reynolds numbers). 
However, there are some other possibilities on the discrete level which may lead to different results. A 
more detailed analysis for these cases is in preparation and will be published in a forthcoming paper. 

The different schemes we used are the following. 
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Coupled solution by Coupled solver: CC-{n.l,c,x}. We use the adaptivejixed point defect correction 
method as outer iteration, while for the linear coupled subproblems we choose C = S and a = 1. Hence 
the linear equations in the non-linear process are solved in one iteration step, meaning that L = 1. This 
solver is a multilevel-based approachI6 with a block Gauss-Seidel scheme as smoothing operation. If 
we perform N 2 1 non-linear iterations until the residual vanishes, we denote this fully implicit 
coupled scheme by CC-n. If we choose N =  1, meaning only one non-linear iteration, we obtain the 
versions with time-extrapolated advection, namely CC-1 (linear extrapolation) and CC-c (constant 
extrapolation). We omit the possibility of treating the non-linearity explicitly (version CC-x), since the 
resulting subproblems are of quasi-Stokes type and no gain in efficiency could be observed for our 
solution approach. 

Coupled solution by Projection solver: CP-{n,l,c,x}. We use again the adaptive fixed point defect 
correction method as outer iteration and select the preconditioner C = MI. We first consider the fully 
non-linear iteration, which is denoted by CP-n. If L is large enough, i.e. if the linear problems are 
solved accurately, then the same approximate Frechkt derivative as in CC-n is taken in each non-linear 
step and the number of non-linear iterations must be the same as in the fully coupled version CC-n. 
However, we have seen that the case L =  1 leads to a different approximate Frechkt derivative and 
therefore the number of non-linear steps will change. We usually perform N =  9 non-linear steps at the 
maximum. If we can solve the non-linear problem in less than nine steps, we get again the same 
solution as obtained by CC-n and the time step size is the same. If N =  9 is not sufficient, the resulting 
solution may be different and the time step size has to be reduced. 

Performing only one non-linear iteration, we obtain the versions CP-c and CP-1. We solve the 
resulting linear problems again by L steps of our discrete projection scheme, with L = 9 iterations at the 
maximum. If L = 9 is not large enough, we arrive at a different solution as obtained by the coupled 
solvers CC-{l,c} and the time step size again has to be reduced. 

Projection solution by Pmjection solver: PP-{n,l,c,x}. First we apply a decoupling step for u andp 
as outer iteration. We choose again C = MI, but perform only L = 1 iteration with a = 2 in each time 
step, which is equivalent to (19) and (20). In the fully non-linear case, PP-n, we use the same fixed 
point iteration as explained above for the transportdiffusion step with non-linear operator S. In an 
analogous way we treat (by extrapolation) the linearized schemes PPc  and PP-1 and additionally we 
also test the explicit treatment of the non-linearity, PP-x. 

All versions of CC-{n,l,c,x} and CP-{n,l,c,x} (and even PP-{n,l,c,x} for L large enough) lead to the 
‘same’solutions if the numbers of non-linear steps, N, and discrete projection steps, L, are large enough. 
The variants PP-{n,l,c,x} with L = 1 may lead to different results, but for time steps k chosen small 
enough the same solutions are obtained. The complexity analysis in Reference 11 shows that in 2D a 
single iteration of the coupled scheme (C=S)  can be expected to cost about 10 times more than one 
iteration of the operator-splitting method (C = MI). However, at the same time we have to use more non- 
linear sweeps or smaller time steps for C = MI owing to the more explicit character of the scheme. If we 
want to determine the numerical cost of all schemes proposed, we have to ask for the necessary time step 
size to achieve (approximately) the same solution quality. These estimates cannot be given by theoretical 
considerations but they have to be obtained by numerical tests. 

Adaptive time step contml. We apply two kinds of time step selection: by ‘hand’ and by an adaptive 
error control. The former is easy to explain. We perform tests with a sequence of fixed time steps until 
no significant differences can be detected in comparison with a reference solution. This ‘exact’ solution 
is calculated with a very small time step but on the same spatial mesh. A more practical approach is the 
following one which is based on the estimation of the truncation error. 
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We assume that the method used is second-order-accurate in time (an analogous procedure can be 
performed for the fimt-order schemes). We are at time level tn and we want to calculate a solution at 
tn+l = tn + k. We denote by uk the solution pair {u, p }  which is obtained by time step size k. Let u 
denote the exact solution at rn+l. Our aim is to find an appropriate value for k such that the following 
estimate holds for the relative error measured in a properly chosen norm 11.11 : 

IIu - ukll <Ellull- (26) 

Here we implicitly make the (heuristic) assumption that the error at starting level tn is zero. In our 
calculations we mostly prescribe the tolerance parameter E = lop3. Further, we assume the asymptotic 
error expansion 

u - U& - Pe(u) + 0(k4), (27) 

with an error term e(u) which is independent of the time step We perform two calculations for step sizes 
R and 3 s  which means that we apply three substeps with A and one step with 3 k  In the case of the 
fictional-step 8 scheme we compare the three substeps with one Crank-Nicolson step with step size 3 l  
(which has a slightly different constant in the error expansion). This approach cannot be verified by 
rigorous mathematical arguments, but the performed test calculations always worked very well. Next we 
define the value for the relative changes: 

Then by a linear combination of relation (27) for k and 3 l  we obtain 

and hence 

This last relation leads to the following estimate for k when the relative error is bounded by the given 
tolerance E as demanded in (26): 

- 1  P<8&- 
RELi 

Our strategy is as follows. Given a step size i, we perform three (sub)steps with a parameter 1 and one 
step with 3k. Afterwards we calculate the relative changes RELi and use this parameter to compute the 
necessary time step k such that the error in equation (26) is controlled by E If the estimated value k is 
much smaller than the time step 1 used for its prediction, we repeat the last calculation with = k. If the 
value for k is larger than the used one or only slightly smaller (say less than 50 per cent), we accept the 
result and perform the next macro time step, now with k and 3k. Finally we obtain a higher-order 
accuracy if we perform an additional linear extrapolation step of the partial solution ui and u3i. 

This time step control is well known in the field of ordInary differential equations and works well in 
most calculations. The basic assumption is that we are already in the asymptotic range such that the error 
presentation in (27) is true, which, however, cannot be guaranteed in general. A second conceptual 
problem is that we can only give estimates for the local discretization error, hereby assuming ‘exact’ 
starting values for every time step. Although most of our numerical tests gave satisfactory results, there 
may occur problems, particularly in strongly non-stationary cases. Therefore we are planning in the 
future to incorporate a global residual-based error control as proposed in Reference 23. 
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Figure 2. Coarse grids 

4. NUMERICAL COMPARISONS 

The two test problems we consider (see References 5 and 24 for more details) are 

(i) von K h i n  vortex shedding behind an inclined plate in a channel 
(ii) flow in a Venturi pipe (a dynamic water pump device in a sailing boat). 

Figure 2 shows the meshes used, which are refined systematically by connecting opposite midpoints. 
The resulting meshes in our multigrid calculations for the channel flow range from 13,500 elements 
(coarse level) to 54,000 elements (fine level) and for the Venturi pipe from 20,500 elements (coarse 
level) to 82,000 elements (fine level). 

(i) The total length of the channel is & = 10, the height is Ht = 5 and the length of the plate is L, = 1. 
At the inlet we prescribe a parabolic velocity profile with Urn, = 1, while at the outlet a Neumann-type 
outflow condition is used.24 The prescribed viscosity is v = 1/500. Figure 3 shows a typical snapshot of 
the (relative) streamlines for this problem and the oscillating (long-) time behaviour (up to T=60,  
starting with Stokes flow) for the mean pressure difference across the plate defined by 

P h -  P Pdiff: = 

The reason for choosing this quantity in our tests is the expected appearance of pressure boundary 
layers. Since PdiE is an important physical quantity, a ‘good’ method should be able to give accurate 
results for this quantity. 

(ii) The total length of the Venturi pipe is 4 = 32, the height at the inlet is Ht = 5, the height in the 
interior is Hi = 1 and the width of the small upper channel is = 0.8. At the upper small ‘inlet’ and the 
right ‘outlet’ we prescribe the zero-mean-pressure condition,24 while at the left inlet a parabolic velocity 
profile with Urn= 1 is prescribed, leading to maximum velocities of about 7 in the interior. At the 
narrowing a lower pressure is generated which enforces an incoming flux from the upper inlet, at least 
for the viscosity parameter v = 1/1000 used. Figure 4 shows a typical snapshot ofthe streamfunction 
and pressure for this problem and the (long-) time behaviour (up to T= 30) of the pressure and first 
velocity component at a certain boundary point in the right upper half of the domain. 

All calculations are performed in FORTRAN 77 on Indigo (Silicon Graphics) or SSlO (SUN) 
workstations, which have about the same performance rating. 

10 20 30 40 50 60 
Figure 3. Streamline snapshot and mean pnssure difference for channel flow 
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5 10 15 20 25 30 5 10 15 20 25 30 
Figure 4. Streamline/pressure plot and velocity/pressure behaviour for Venturi pipe 

4. I. Differences between Jirst- and second-order schemes 

We first concentrate on the results for the first-order schemes, namely the backward Euler scheme 
(BE) for the momentum equations and the constant extrapolation technique for the advection term (‘c’ 
versions). We show that both methods usually lead to results comparable with those obtained by the 
schemes of second order if the time step is drastically reduced (in our tests by at least a factor of 10). 
Further, no essential speed-up in efficiency can be found: the evaluation of the right-hand side in the 
Euler scheme can be slightly accelerated, but this is not essential in implicit methods. 

The non-linear iteration can be avoided through simple constant extrapolation, but the same is true for 
the linearly extrapolated scheme, which is more accurate. Before we show some results, let us make a 
final remark concerning the first-order Chorin scheme.21 It is straightforward to develop a corre- 
sponding discrete version in our context (setting po = 0). The test calculations show that this method is 
too inaccurate and inefficient. In Figure 5 we show (relative) streamlines for the channel flow at T= 10 
computed with the fully non-linear coupled versions (CC-n) of the CN and FS schemes (with k= 0.33) 
and with the BE method for k= 0.33 and 0.033. Here and in all other calculations the corresponding 
time step for the BE scheme has to be chosen smaller by at least a factor of 10. Figure 6 shows the time 
behaviour of the flux through the upper inlet in the Venturi pipe. We show corresponding results for CC- 
n via the FS and BE schemes, compared with the reference solution. Again the BE method forces us to 
choose at least k= 0.01 1 to obtain similar results. 

Similar results can be obtained for the ‘c’ versions, i.e. with constant extrapolation backwards in time 
for the advection term instead of using the l l l y  non-linear iteration (Figures 7 and 8). Our first 
consequence is that we drop the BE scheme, the constant extrapolation techniques (‘c’ versions) and the 
Chorin scheme fiom the list of candidates as ‘good’ methods. Their total efficiency is much lower 
compared with the higher-order methods. 
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Figure 5. Relative streamlines of vortex shedding for channel flow: top, CN (k=  0.33, left) and FS ( k =  0.33. right); bottom, BE 
(k=0.33, left) and BE (k=0.033, right) 

5 10 15 20 25 30 5 10 15 20 25 30 

Figure 6. Total flux through upper inlet, calculated with FS (left) fork = 0.1 I (- )and BE (right) fork= 0.1 1 (- ) 
and 0.05 (- - - -), compared with reference solution (. .  .... .) 

10 20 30 40 50 60 10 20 30 40 50 60 
Figure 7. Mean pressure drop for channel flow, calculated via CC-n-CN (left, k = 0.33, - ) and CC-c-CN (right, 

k = O . l l ,  ~ ; k = 0.033, ( - - - - ), compared with refmnce solution ( . . . . . . .) 

5 10 15 20 25 30 5 10 15 20 25 30 
Figure 8. First velocity component at a single poiot for Venturi problem, calculated via CC-n-FS (left) with k= 0.1 1 (- 1 

and CCc-FS (right) with k= 0.033 (- ) and 0.011 (- - - - ), compared with refacnce solution (. . . . . . .) 
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4.2. Differences between Cmnk-Nicolson and Fractional step 8 schemes 

As mentioned before, some more theoretical and numerical details about these schemes can be found 
in Reference 12. The essential theoretical results are as follows. Both are of second-order accuracy and 
lead to comparable numerical cost. However, the CN scheme is only A-stable while the FS method is 
strongly A-stable. This means that for rough initial values or boundary conditions the classical CN 
scheme may lead to numerical oscillations which are damped for smaller time steps only. We confirm 
these theoretical considerations numerically. The result is that for time steps k small enough, both 
schemes lead to approximate solutions with no significant differences, even for long-time calculations 
and high Reynolds numbers. However, if the time step is too coarse, the CN scheme tends to produce 
unphysical oscillations, which means that even for moderate time steps the CN scheme may be less 
robust and accurate compared with the FS scheme. By applying the adaptive time step control, these 
oscillations are damped, but generally a smaller time step has to be chosen to ensure more robustness. 

Figures 9 and 10 show respectively the time behaviour of the mean pressure drop across the plate that 
of the total flux through the upper inlet, compared with reference solutions on the same mesh. Both 
calculations are performed with the schemes CC-n. 

These results confirm that both schemes have about the same accuracy for realistic step sizes. We now 
consider their stability properties. As mentioned before, we expect problems for the CN scheme in 
coping with high-frequency perturbations caused by rough data. First, Figure 11 shows an instability 
effect of the CN scheme in the computation of the flow around a plate. Here the mean pressure drop 
shows non-physical fluctuations fork = 0.1 1 which disappear for k= 0-05. For the same step size the FS 
scheme is stable. For even coarser step sizes k, both schemes exhibit unstable behaviour. These results 
are obtained by the fully coupled solver CC-1 with linear extrapolation of the advection direction, but the 
same behaviour could be obtained with the pure projection schemes P€? Additionally, our results are not 
limited to the case of pressure values on the boundary; the same holds also for points in the interior, i.e. 
all numerical oscillations are global effects. 

Figure 12 demonstrates the last assertion: even the flux (measured through the upper inlet in the 
Venturi pipe) exhibits an unstable behaviour if calculated by the CN scheme. 

Finally we show another deficiency of the CN scheme (Figure 13). Fork = 0.033 (which seems to be 
almost small enough) it produces a non-physical solution with positive outflow through the upper limit 
inlet (i.e. the boat might sink!). 

These results show that the classical CN scheme and the FS scheme are essentially of the same 
accuracy and efficiency as soon as the time step is small enough. Nevertheless, there may occur 
problems for the CN scheme, due to the loss of strong A-stability, which may produce unphysical 
fluctuations of the solution. Therefore we also drop the Crank-Nicolson scheme in the following 
calculations and confine ourselves to the FS scheme. 

10 20 30 40 50 60 10 20 30 40 50 60 
Figure 9. Mean pressure drop for channel flow, calculated by CC-n-CN (left) and CC-n-FS (right) with k= 0.33 (- 1, 

compared with reference solution (. . . . . .) 
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5 10 15 20 25 30 5 10 15 20 25 30 
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Figure 10. Flux for Venluri pipe, calculated by CC-n-CN (left) and CC-n-FS (right) with k=0.33 (- - - - ) and 0.11 
(- ), compared with reference solution (. . . . . . .) 

10 20 30 40 50 60 10 20 30 40 50 60 
Figure 1 1. Mean pressure drop for channel flow, calculated by CC-I-CN (lefl) and CC-I-FS (right) with t = 0.1 1 (- ), 

compared with reference solution (. . . . . . .) 

5 10 15 20 25 30 5 10 15 20 25 30 
Figure 12. Total flux for Venturi pipe, calculated by CC-I-CN (left) and CC-I-FS (right) with k=0.11 (- ) and 0.033 

( - - - -  ) , compared with reference solution (. . . . . . .) 

5 10 15 20 25 30 5 10 15 20 25 30 
Figure 13. Total flux for Venturi pipe, calculated by PP-n-CN (left) and PP-~FFS (right) with k=0.033 (- 1, c o m p d  

with reference solution (. . . . . . .) 



1002 S. TUREK 

4.3. Diflerences between coupled and operator-splitting schemes 

We now examine the differences between the proposed methods CC (coupled solution by coupled 
solver), CP (coupled solution by projection solver, L 3 1) and the special case PP (projection solution 
by projection solver, with L = 1). In this comparison we always examine the non-linear versions; the 
other possibilities are discussed later. 

Owing to the more explicit character ofthe projection scheme (L = l), we expect some problems with 
the robustness if the step size is too large. In contrast, the fully implicit coupled solvers show a much 
better stability behaviour. Figure 14 shows the second velocity component for the channel flow. Even for 
very large time steps we detect vortex shedding behind the plate. This fact could be easily used for a 
demonstration of the ‘perfect’ speed of the code, since, even for very large time steps, video films with 
,periodic vortex shedding can be generated. They look ‘physical’, but the solutions are inaccurate, 
particularly with respect to the frequency of the oscillations. 

In contrast, the projection schemes tend to exhibit numerical oscillations as soon as a critical limit for 
k is exceeded; see Figure 15. However, this defect can be suppressed by the use of an adaptive time step 
control; without this control mechanism, projection schemes may be worthless. The same phenomena 
can be observed for the Venturi pipe problem. However, for large time steps k the solutions obtained by 
CC-n seem to be too inaccurate and therefore worthless (see Figure 16). 

We have seen that stability requirements force us to use smaller step sizes k with the projection 
schemes PP. The same is true if the proposed schemes are used to calculate steady state solutions (for 
low Reynolds numbers). In this case the time step size is restricted by stability requirements only, since 
the computed stationary solutions are always the same. The necessary time steps for the channel flow 
with u = are determined by the adaptive time step control. The versions CP differ From CC as 
described in the previous section, since only a fixed number of non-linear iteration steps are performed. 
For comparison we show the corresponding results when a stationary version of the scheme CC-n is 
used.’ The suffixes ‘c’ and ‘f‘ in Table 1 indicate that the calculations are performed on the coarse and 
the fine mesh respectively. It is obvious that for low Reynolds numbers and particularly for stationary 
solutions the coupled solution techniques are favourable, at least if the mesh is not too anisotropic: the 
stationary solver is much faster. However, we are much more interested in the case for large Reynolds 
numbers when the flow becomes non-stationary. Then theoretical considerations in Reference 11 show 
that the projection techniques improve and for highly non-stationary flow they become superior. 
However, the ‘practical’ question is: what time step has to be used to achieve the same accuracy? 

Tables 11-V show the results for higher Reynolds numbers, again for the channel flow and the Venturi 
pipe problem. The surprising fact is that the time steps required to obtain the same high accuracy as 
observed by the coupled methods are only moderately smaller (a factor of 1.5-5). Since the expected 

I I I I I I I 

10 20 30 40 50 60 
Figure 14. Sccond velocity component for channel flow at an interior point behind plate, calculated with CC-n 

(k= 1.0, ___ ), compared with reference solution ( . . . . . . .) 
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1 2 3 4 5 6 7 8 9 1 0  1 2 3 4 5 6 7 8 9 1 0  
Figure 15. Mean pressure drop for channel flow, calculated by CC-n (left, k=0.33, ~ ) and PP-n (right) with k = 0.1 1 

(- ) and 0.075 (- - - - ), compared with reference solution (. . . . .) 

1 2 3 4 5 6 7 8 9 1 0  1 2 3 4 5 6 7 8 9 1 0  
Figure 16. Total flux for Vmturi pipe problem, calculated by CC-n (left, R=0.11, - ) and PP-n (right) with k=0.05 

(- ) and 0.022 (- - - - ), compared with reference solution (. . . . . . .) 

Table I. Results for channel flow with 1/v = 5 (c =coarse, f = fine) 

Method 
~~ _____ ______ 

Time steps Min. time step Max. time step CPU time (s) 

CC-c (stationary) 1 
c c - c  72 
CPC 87 
PP-c 90 

- 
0.0176 
0.01 18 
0.0033 

- 
3230.0 
525.0 
680.0 

115 
2694 
1540 
1355 

756 CC-f (stationary) 1 
CC-f 81 0.0139 3970.0 13,480 
CP-f 96 0.0072 131.0 8972 
PP-f 111 0.00 I4 876.0 7883 

- - 

Table 11. Results for channel flow with l / v  = 500: averaged time step accepted by hand 

Method Start = Stokes, 
T=60 

Start = fully developed, 
T= 10 

CCC-500 
PPC-500 

cc-f-500 
PP-f-500 

0.111 
0.044 

0.088 
0.033 

0.222 
0.055 

0.111 
0-033 
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Table 111. Results for channel flow with adaptive control: accepted time step by adaptive 
control unit T= 10 (start = fully developed) 

Method Min. time step Max. time step Ave. time step 

CC-C-50 0.008 
PP-C-50 0.004 
CC-C-500 0.076 
PP-C-500 0.032 
CC-C-IO,o00 0.028 
PP-C- 10,OOO 0.024 

0.165 
0.090 
0.1 1 1  
0.054 
0.1 1 1  
0.053 

0,119 
0.063 
0.085 
0.041 
0.041 
0.035 

CC-f-SO 0.007 0.143 0.109 
PP-f-50 0.003 0.074 0.032 
cc-f-500 0.057 0.111 0.070 
PP-f-500 0.020 0.042 0.027 
cc-f- 10,Ooo 0.007 0.040 0.024 
PP-f-10,Ooo 0.004 0.028 0.022 

Table IX Results for Venturi pipe with 1 /v = 1000: averaged time step accepted by hand 

Method Start = Stokes, 
T= 30 

Start = fully developed, 
T= 10 

cc-c- 1 OOO 
PP-c- 1000 

0444 
0.022 

0.050 
0.022 

cc-f- 1000 0.033 0.045 
PP-f- 1 000 0.010 0.011 

Table V Results for Venturi pipe with adaptive control: accepted time step by adaptive control 
until T= 10 (start = fully developed) 

Method Min. time step Max. time step Ave. time step 

CC-C-lo00 0.0 16 0.065 0.034 
PP-C- 1 OOO 0.012 0.040 0-024 

cc-f- lo00 0.005 0.033 0.014 
PP-f- 1 OOO 0.033 0.019 0.010 

gain in efficiency" for the linear algebra part is at least a factor of nine, we can claim that the projection 
schemes are faster than the coupled ones despite the fact that the total number of time steps may be 
larger. On the other hand, at the moment it is not clear to us which method is preferable: the pure 
projection method PP (L = 1) or the scheme CP which obtains the coupled solution via the splitting 
techniques (L 2 1). The final discussion of the total efficiency will follow at the end of this section. 

Another surprising observation is that all solutions obtained are 'identical' (up to round-off errors) 
even up to the boundary. This could mean that the projection methods do not exhibit spurious boundary 
oscillations of the pressure at all. However, our projection methods with L = 1 suffer from these defects, 
but significantly only for very small Reynolds numbers. For increasing Reynolds numbers these defects 
are invisible. One possible explanation might be that not only the width of these boundary layers is of 
order qh), but also the absolute size of the error is proportional vk. This corresponds to first theoretical 
results and will be the subject of a forthcoming paper. 
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4.4. Diferences between f ir& non-linear and linearization techniques 

As explained in the previous section, we have different possibilities to treat the non-linear advective 
term: we can use fidly implicit non-linear iteration schemes (version ‘n’), we can perform a semi- 
implicit linearization using the previous solutions (versions ‘c’ and ‘1’) or we can treat this term fully 
explicitly by treating it as part of the right-hand side (using solutions from the previous time level, 
version ‘x’). It is obvious that the fully implicit treatment leads to the most robust and accurate scheme, 
but the numerical work is the largest too. Analogous conclusions can be drawn for the other schemes. 
Hence again the question is: what are the required time steps in a practical example? 

We perform the same test results as before (see Table VI and VII) and, for comparison only, we repeat 
the results for version ‘n’. We drop the coupled versions CC-x, since no gain in efficiency could be 
reached (quasi-Stokes instead of Oseen problems, which lead to almost the same multigrid convergence 
rates), and the mixed schemes CP, which are presented later. In this test the resulting time steps for CP 
are about the same as for versions CC. We can see that the fully implicit coupled schemes CC-n lose 
their high accuracy as soon as we skip the ‘exact’ non-linear treatment: the linearized coupled schemes 
CC-1 may need about the same time step size as the fully non-linear decoupled scheme PP-n. The 
differences for the projection schemes between fully non-linear PP-n and the linearized version PP-1 are 
less pronounced. However, there is an difference in stability: owing to their more explicit character, the 
linearized versions tend to exhibit numerical oscillations when time steps are too large (see Figure 17). 

Table VI. ‘Linearization’ results for channel flow with 1 / v  = 500 

Accepted time step by hand until T= 60 (start = Stokes) 
Method Ave. time step Method Ave. time step 

CC-n-c 0.1111 CC-n-f 0.0800 
cc-l-c 0.0750 CC-1-f 0.0650 
PP-n-c 0.0444 PP-n-f 0.0333 
PP-1-c 0.0333 PP-1-f 0.0222 

Accepted time step by hand until T= 10 (start = fully developed) 
Method Ave. time step Method Ave. time step 

CC-n-c 0.2222 CC-n-f 0*1111 
cc-I-c 0.0750 CC-I-f 0.0700 
PP-n-c 0-0555 PP-n-f 0.0333 
PP-I-c 0.0444 PP-I-f 0.0333 
PP-x-c 0.0075 PP-x-f O.OO50 

Accepted time step by adaptive control until T= 10 (start = fully developed) 
Method Min. time step Max. time step Ave. time step 

CC-n-c 
cc-l-c 
PP-n-c 
PP-l-c 
PP-x-c 
CC-n-f 
CC-I-f 
PP-n-f 
PP-I-f 
PP-x-f 

0.0762 
0.0333 
0.0321 
0.0329 
0.0048 

0.0574 
0-0301 
0.0196 
0.0199 
0-0035 

0.1111 
0.0877 
0.0537 
0.0517 
0.01 11 

0.1111 
0.0781 
0.0422 
0.0395 
0-007 1 

0.0853 
0.0764 
04417 
0.0398 
0.0067 

0.0708 
0.0648 
0.0278 
0.0262 
0-0051 
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Table VII. ‘Linearization’ results for Venhui pipe with 1 / v  = 1000 

Accepted time step by hand until T= 30 (start = Stokes) 
Method Ave. time step Method Ave. time step 

CC-n-c 0.0500 CC-n-f 0.0450 
cc-1-c 0,0333 CC-I-f 0.0333 
PP-n-c 0.0222 PP-n-f 0-0150 
PP-I-c 0.01 11 PP-I-f 0-0090 

Accepted time step by hand until T= 10 (start = fully developed) 
Method Ave. time step Method Ave. time step 

CC-n-c 0.0500 CC-n-f 0.0450 
cc-I-c 0,0333 CC-I-f 0.0333 
PP-n-c 0.0222 PP-n-f 0.01 11 
PP-l-c 0.01 11 PP-I-f 0.0099 
PP-x-c 0.0022 PP-x-f 0.0011 

Accepted time step by adaptive control until T= 10 (start = fully developed) 
Method Min. time step Max. time step Ave. time step 

CC-n-c 0.0158 0.0650 0.0335 
cc-I-c 0.0059 0.0544 0-0253 
PP-n-c 0.0122 04MO 1 0.0235 
PP-I-c 0.0135 OW19 0.0225 
PP-x-c 0~0001 0.0067 0.0019 

CC-n-f 
CC-I-f 
PP-n-f 
PP-I-f 
PP-x-f 

0.0054 
0,0029 
0.0035 
0.0057 
o.oO01 

0.0333 
0.0333 
0.0192 
0.0333 
0.0022 

0.0139 
0.0118 
0.0109 
0.0104 
O-OOO9 

The following efficiency results, which measure the total CPU time needed, might indicate that PP-1 
is to be preferred. However, calculations on very fine meshes, for the same or even higher Reynolds 
numbers, show different solutions obtained by PP-n and PP-1 for the tolerance parameter E = lop3. We 
believe that this is due to a lack of time step control and a smaller value for E should be used. Then the 
necessary time steps k seem to be smaller for PP-1 than for the non-linear version PP-n. However, this 
fact seems to be significant only in the case of high Reynolds numbers and very fine meshes, such that 
important non-linear effects can be really resolved. However, this very fine mesh width is far from being 

................................................................. 

5 10 15 20 25 30 5 10 15 20 25 30 
Figme 17. Respurc at an interior point for Venhai pipe, calculated by CC-n (left) with k = 0.33 (- ) a d  CC-I (right) with 

k = 0.05 (- ) and 0.033 (- - - - ), compared with nference solution (. . . . . .) 
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realistic if we think of 3D applications on workstations, so the linearized approach seems to be 
favourable under the present conditions. 

In contrast, the hlly explicit treatment of the non-linear term always leads to much smaller step sizes. 
The choice has to be made for stability reasons only: for time steps slightly larger, numerical oscillations 
appear and the solutions blow up. We will see in the following considerations of the total numerical 
complexity that no gain in efficiency is reached (at least on our workstations), although the resulting 
linear systems are symmetric. 

4.5. Diflerences in total eflciency 

Finally we consider the total numerical efficiency, which is probably the most important measure for 
the quality of the methods proposed. We have already examined the necessary time step sizes for all 
schemes to guarantee approximately the same solution quality. Addtionally we derived in Reference 11 
theoretical results for the numerical complexity of each iteration step. The last open question is: 
evaluating all previous results, what total CPU time is needed to reach a given time level with a 
prescribed accuracy? To provide a fair comparison, we did all implementation by ourselves, so that the 
level of code optimization is about the same. Further, all codes are written for workstations only, 
neglecting vectorization and parallelization strategies. 

Tables VIII and IX show the results until T = 30, starting from the Stokes solution as initial value and 
using an adaptive time step control. In comparison with the previous results, the versions ‘CP’ are 
performed too. In this case each non-linear iteration is stopped if one digit of accuracy is reached in the 
improvement of the defect (with L < 9), and only one multigrid sweep is performed. The maximum 
number of non-linear steps is N = 9. Therefore the versions ‘CC’ and ‘CP’ may differ, but the time step 
control guamntees (almost) the same results for velocity and pressure. In Figures 18 and 19 we present 
the graphs of resulting time steps for CC-n, PP-1 and PP-x. 

We finish this section with the following results. The fully implicit coupled schemes CC-n are the 
most accurate solvers, but also the most expensive ones for highly non-stationary flows. The methods 
which use splitting techniques reach a given time level much faster. They approximately satisfy the same 
prescribed accuracy despite the fact that the total number of time steps may be larger. On the other hand, 
at the moment it is not clear to us which method is preferable: the pure projection methods (PP, L = 1) or 

Table VIII. Results for channel flow with l / v  = 500 

Method Min. time step Max. time step Ave. time step Elapsed time 

CC-n-c 0.0296 0.2001 04982 21,646 
cc-I-c 0.0186 0.1403 04683 16,139 
CP-n-c 
CP-I-c 
PP-n-c 
PP-I-c 
PP-x-c 

CC-n-f 
CC-I-f 
CP-n-f 
CP-1-f 
PP-n-f 
PP-1-f 
PP-x-f 

0.0289 
0.0187 
0.0139 
0-0138 
0-oO01 
0.0262 
0.0171 
0-0246 
0.0157 
0.0099 
0.0099 
o.Oo01 

0.1823 
0.1182 
0.1056 
0.1021 
0.0139 

0.1638 
0.1191 
0.1451 
04969 
0.0822 
0.0797 
0.0125 

0.0931 
0.0669 
04549 
0.0539 
0.0070 

0.0702 
0.0547 
0.0662 
04463 
0.0347 
0.0338 
0.0052 

6464 
7470 
651 1 
4471 

25,653 

124,113 
94,145 
44,796 
49,802 
43,898 
30,059 

148,263 
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Table IX. Results for Venturi pipe flow with 1/v  = lo00 

Method Min. time step Max. time step Ave. time step Elapsed time 

CC-n-c 0.0108 0.0594 0.0271 167,202 
cc-I-c 0.0104 04407 0.0183 139,724 
CP-n-c 0.0102 0.0502 0.0267 32,669 
CP-l-c 0.0046 0.0391 0.0223 62,913 
PP-n-c 04025 0.0468 0-0195 33,896 
PP-I-c 0.0018 0.0404 0.0190 25,306 
PP-x-c O~OoO1 0.0049 0.0017 221,392 

CC-n-f 0.0053 
CC-I-f 0*0050 
CP-n-f 04058 
CP-I-f 0.0046 
PP-n-f 0*0014 
PP-ld 0~0011 
PP-x-f O~Ooo1 

0.0384 
0.0253 
0.0333 
0.03 17 
0.0333 
0,0341 
04016 

0.0138 
0.0093 
0-0137 
0.0083 
0.0110 
0,0099 
O-OOO8 

1460,054 
1852,784 
307,691 

1407,385 
288,414 
253,857 

2362,262 

0.5 
0.45 
0.4 
0.35 
0.3 

0.25 
0.2 
0.1 5 
0.1 
0.05 t -- . 1.1.11.1.. . 

5 10 15 20 - 25 30 
Figun 18. Adapbvely chosen mcro time step sizes K = 3k for channel flow: methods CC-n (- - - - ), PP-I (poiits) and 

PP-x (- 1 

0.12 
0.1 

0.08 
0.06 
0.04 
0.02 

5 10 15 20 25 30 
Figure 19. Adaptively chosen macro time step sizes K =  3k for Venfuri pipe: methods CC-n (- - - - ), PP-I (- 1 and 

PP-x @oints) 
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the schemes which obtain the coupled solution via the splitting techniques (CF‘, L 2 1). Our present 
favourite is the linearized scheme PP-1. 

5. CONCLUSIONS 

Our intention in this paper is to compare (theoretically and numerically) some time-stepping schemes 
for the solution of the incompressible Navier-Stokes equations. They key points are the effect of some 
important components of the methods on their stability, accuracy and efficiency. These components are 

(a) backward Euler, Crank-Nicolson or fractional-step 8 scheme as discretization methods for the 

(b) coupled solvers in n and p or operator-splitting methods of projection type 
(c) fully non-linear techniques, semi-implicit linearization or explicit treatment of the advection. 

Theoretical considerations in Reference 1 1 show that the discreteprojection approach in combination 
with non-confonningfinite elements is well suited for these non-linear indefinite equations. The discrete 
projection schemes encompass u-p coupled solution approaches as well as operator-splitting schemes. 
Particularly for highly non-stationary flows the numerical cost of the decoupled solvers is much lower 
and no robustness problems occuc on anisotropic grids. However, the required time step size is smaller 
for these splitting schemes. Since an exact quantitative prediction seems to be impossible for ‘real life’ 
problems, we perform test calculations for a class of problems thought to be representative. 

1. The flow in a channel around an inclined plate for Reynolds number (approximately Re = 500. 
An important physical quantity is the pressure distribution on the surface of the plate. This 
calculation comsponds to a typical mid-range-Reynolds-number problem and produces a 
periodically oscillating vortex shedding. 

2. The flow in a Venturi pipe for Reynolds number (approximately) Re = 5000. Important physical 
quantities are the flux through the upper small inlet and the pressure distribution at the wall. The 
resulting solutions are very complex (in space and time) and no simple periodicity can be 
observed. 

Our scheme represent for a large variety of methods: fully implicit non-linear coupled solvers; semi- 
implicit iteration methods of SIMPLE type; backward Euler, Crank-Nicolson and fractional-step 8 
schemes; projection schemes of first and second order (similar to the schemes of Chorin, Van Kan and 
Gresho); schemes with an explicit treatment of the advection often used in spectral codes; and some 
more. Therefore we hope that our comparison is somehow illustrative, especially in view of giving a 
general rating of all these schemes concerning accuracy, stability and efficiency. Additionally, with our 
special finite element discretization we can include other discretization schemes too. For instance, our 
favourite schemes of projection type lead to similar matrices as some classical staggered grid finite 
difference discretizations, but generalized for arbitrary grids. Furthermore, they include the complete 
finite element analysis by background. 

We conclude with the recommendation to use splitting techniques in the fully non-stationary case of 
high Reynolds numbers, in which they may lead to much more robust and efficient methods than fully 
coupled approaches. In combination with the hctional-step 8 scheme they give excellent results, with 
or without fully non-linear treatment. By theoretical considerations it seems to be preferable to use them 
as solver only (version CP, L 2 1) to calculate the coupled solution, but our numerical tests indicate that 
the pure projection schemes (version PF’, with L = 1) may be even more efficient. The hlly coupled 
approach CC with coupled solution methods should be used only for low Reynolds numbers, in which 
case direct stationary solvers can be developed. 

momentum equations 
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Summarizing, our recommendations for computing non-stationary flows are the following. 

1. Use only second-order methods in time. Schemes such as backward Euler, the Chorin projection 
scheme and constant extrapolation in time for the advection should be avoided. The resulting 
time steps are much smaller and no essential gain in efficiency is achieved. 

2. We suggest to use the fractional-step 8 scheme. It has the same numerical complexity and 
accuracy as the Crank-Nicolson scheme but its stability behaviour is better. 

3. Use the coupled solver only for low Reynolds numbers (i.e. for almost stationary solutions). For 
increasing Reynolds numbers the projection solvers are getting much better and these solvers are 
robust even on very anisotropic grids. For high Reynolds numbers the necessary time steps for 
the projection schemes are only moderately smaller (by a factor of two to five) compared with the 
coupled approach. Additionally, in this case no significant boundary layers of the pressure are 
visible and all obtained solutions are the same (up to round-off errors). 

4. Do not treat the non-linear term fully explicitly. Despite the fact that the resulting linear systems 
are symmetric, the total CPU time is larger. Since very efficient solvers for non-symmetric 
schemes have recently become available and since the resulting time steps can be chosen larger 
(by at least a factor of lo), we prefer the fully non-linear or at least linearly extrapolated 
treatment. We propose the hlly implicit methods with the adaptive defect correction approach 
because of their high robustness and accuracy. Further, the resulting linear subproblems can be 
solved very efficiently, since it is completely sufficient to gain one digit per iteration. Only in 
combination with very regular grids, i.e. tensor product meshes, might the explicit methods be 
preferable, at least on vector computers. However, this approach does not work on general 
domains and meshes. Furthermore, we are not sure about the relation between mesh size and time 
step for these methods. For the implicit schemes this coupling seems to be very weak and is 
controlled only by accuracy and not by robustness limits. 

5.  The tests performed show that an adaptive time step control is absolutely necessary. The reason is 
not only to obtain accurate solutions but also to exclude numerical instabilities. Only the fully 
implicit non-linear coupled approaches CC-n and CP-n in combination with the fractional-step 8 
scheme lead always to numerically ‘stable’ results. Without any time step control the projection- 
type solvers may be even worthless. 

In Reference 11 we have discussed that full efficiency is achievable particularly with the non- 
conforming finite element spaces. This fact, together with the theoretical analysis which shows that 
these elements seem to be one of the simplest but most stable finite elements on arbitrary grids,” makes 
them attractive for practical flow simulation. First numerical tests in 3D with the coupled techniques16 
show their reliability in the general case. Our next step will be to add the developed splitting techniques 
and to perform similar 3D tests (see also Reference 1). Further, it would be very interesting to know 
whether our results can be reproduced with other spatial discretizations (confonning finite elements, 
finite volumes, etc.) and for other (probably more interesting) classes of problems, particularly for the 
3D case. The author would be thankful for further suggestions and results. 
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